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An efficient algorithm for solving the phase field crystal model
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Abstract

We present and discuss the development of an unconditionally stable algorithm used to solve the evolution equations of
the phase field crystal (PFC) model. This algorithm allows for an arbitrarily large algorithmic time step. As the basis for
our analysis of the accuracy of this algorithm, we determine an effective time step in Fourier space. We then compare our
calculations with a set of representative numerical results, and demonstrate that this algorithm is an effective approach for
the study of the PFC models, yielding a time step effectively 180 times larger than the Euler algorithm for a representative
set of material parameters. As the PFC model is just a simple example of a wide class of density functional theories, we
expect this method will have wide applicability to modeling systems of considerable interest to the materials modeling
communities.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The dynamics of a non-equilibrium system often results in highly complicated domain structures (micro-
structures). Typically, as time proceeds, the average size of these structures grows as a direct consequence of
free-energy reduction: the interface is eliminated resulting in an increase in the size of homogeneous regions.
Traditional non-equilibrium dynamics usually deals with the equilibrium states that are spatially uniform
[1–4], i.e., the stable phases are characterized by homogeneous values for the appropriate intensive thermo-
dynamic variables. Classic, albeit quite simple, examples of models governing the evolution of such systems
are the Cahn–Hilliard (CH) equation for conserved systems [5] and Allen–Cahn (AC) equation for non-con-
served systems [6]. Examples are found in polymer mixtures [7], alloys [8,9], liquid-crystals [10,11], and in
cosmology [12].
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A model that has generated considerable recent interest is the phase field crystal (PFC) equation [13,14],
which is a conservative form of the familiar, non-conserved, Swift–Hohenberg (SH) equation [15]. These sys-
tems differ from the CH and AC systems in that the stable phase is periodic. For SH models, the order param-
eter is viewed as capturing the inhomogeneities in a fluid associated with Rayleigh-Bénard convection. In the
case of the PFC model, which is a simple version of more elaborate density functional theories of liquid/crystal
interfaces [16,17], the model captures features at the atomic scale, and thus contains highly detailed physical
information about the system’s structure. Such models can describe many of the basic properties of polycrys-
talline materials that are realized during non-equilibrium processing.

The equations of motion governing these non-equilibrium phenomena are non-linear partial differential
equations that cannot generally be solved analytically for random initial conditions. Therefore, computer sim-
ulations play an essential role in our understanding and characterization of non-equilibrium phenomena. The
standard Euler integration is known to be unstable for time step Dt above a threshold fixed by lattice spacing
Dx [18]. In CH and AC systems, to maintain an interfacial profile, the lattice spacing must be smaller than the
interfacial width n, and in PFC and SH systems, Dx must smaller than the periodicity selected by the system.
Thus, the Euler update is inefficient, and in practice it is computationally costly to use to evolve large systems.
Various computational algorithms [19–21] have been developed by increasing Dt compared to the simplest
Euler discretization. However, these methods still require a fixed time step, so they eventually become ineffi-
cient. Recently, unconditionally stable algorithms [22–25] were developed to overcome this difficulty for CH
and AC equations. These algorithms are a class of stable algorithms free of the fixed time step constraint for
equations with a mix of implicit and explicit terms. While these algorithms allow for an increasing time step in
CH systems as time proceeds, only a finite effective time step is possible for AC systems. A recent study [26],
based on this unconditionally stable algorithm, demonstrated analytically that one can use an accelerated
algorithm Dt ¼ At2=3 to drive the CH equation, with the accuracy in correlation controlled by

ffiffiffi
A
p

.
In this paper we apply this unconditionally stable algorithm to the PFC and SH equations (Section 2). In

Section 3 we establish the effectiveness of this approach through numerical studies of the algorithm, demon-
strating that the algorithm is both efficient and accurate for solving PFC equation. Finally, in Section 4 we
provide some concluding remarks.
2. Unconditionally stable algorithms for PFC equation

In this section, we develop a class of unconditionally stable time stepping algorithms (Dt taken arbitrarily
large without the solution becoming unstable) to the PFC and SH equations. Although the main purpose of
this section is to study unconditionally stable algorithms for the PFC equation, we include a parallel discus-
sion of the SH equation, as the methodology applies to both equations with only trivial differences.

2.1. Unconditionally stable finite differences

Both the PFC and SH equations start from a free energy functional that describes the configurational cost
of periodic phases in contact with isotropic phases, and can be expressed as
F ½/� ¼
Z

dx
1

2
/½r þ ð1þr2Þ2�/þ /4

4

� �
; ð1Þ
where the periodic order parameter /ðx; tÞ has the wave number k0 ¼ 1 in equilibrium, and r < 0 characterizes
the quench depth. For the PFC equation, r is proportional to the deviation of the temperature from the melt-
ing temperature T M � T .

In the PFC model the order parameter (the density) is conserved, and thus the equation of motion is in the
form of a continuity equation, o/=ot ¼ �r � j, with current j ¼ �MrðdF =d/Þ, where M is the mobility.
Absorbing M into the time scale, we obtain the dimensionless form of the PFC equation
o/
ot
¼ r2 dF

d/
¼ r2f½r þ ð1þr2Þ2�/þ /3g: ð2Þ
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For the SH equation, on the other hand, the order parameter is not conserved by the dynamics, and its evo-
lution is postulated to have the form
o/
ot
¼ � dF

d/
¼ �½r þ ð1þr2Þ2�/� /3: ð3Þ
Eq. (3) has a simple dissipative form, where the rate of change of / is proportional to the gradient (with an L2

inner product in functional space) of the free energy.
In order to obtain an unconditionally stable algorithm, we now follow methods previously developed for

the CH and AC equations [24,25], and work out in some detail how to semi-implicitly parameterize the equa-
tion of motion. We begin by ‘‘splitting” the linear terms in the equation of motion into ‘‘forward” and ‘‘back-
ward” pieces, both for Eq. (2):
/tþDt þ Dtr2½ða1 � 1Þðr þ 1Þ/tþDt þ 2ða2 � 1Þr2/tþDt þ ða3 � 1Þr4/tþDt�
¼ /t þ Dtr2½a1ðr þ 1Þ/t þ 2a2r2/t þ a3r4/t þ /3

t �; ð4Þ
and for Eq. (3):
/tþDt � Dt½ða1 � 1Þðr þ 1Þ/tþDt þ 2ða2 � 1Þr2/tþDt þ ða3 � 1Þr4/tþDt�
¼ /t � Dt½a1ðr þ 1Þ/t þ 2a2r2/t þ a3r4/t þ /3

t �: ð5Þ
The constants a1; a2 and a3 control the degree of splitting. In order to find the constraints on these parameters
that yield an unconditionally stable algorithms, a standard von Neumann linear stability analysis on Eqs. (4)
and (5) may be performed. The procedures are quite similar and the results are identical for these two equa-
tions. We will only show the details for the PFC model in next subsection.

2.2. Physical versus numerical instabilities

As was found in the analysis of Vollmayr-Lee and Rutenberg [24] for the CH equation, the PFC equation
will be linearly unstable to perturbations for legitimate physical reasons. Specifically, the isotropic phase �/ can
be metastable or unstable to the stable periodic (crystalline) phase [14] if the system is an undercooled liquid.
This situation (which is precisely what we are interested in modeling) is established when r þ 3�/2 < 0. This
physical instability complicates our standard von Neumann stability analysis, as we wish to predict when
our numerical methods will cause an instability that is unrelated to the physical instability resulting from
the thermodynamic.

We can investigate the physical instability by a linear stability analysis on the equation of motion Eq. (2).
We let / ¼ �/þ g, where �/ is a constant phase and g is a small perturbation, and linearize the PFC equation
Eq. (2) in g to get
og
ot
¼ r2½ðr þ 3�/2Þ þ ð1þr2Þ2�g: ð6Þ
This can be Fourier transformed to find
ogk

ot
¼ �k2½ðr þ 3�/2Þ þ ð1� k2Þ2�gk: ð7Þ
The physical instability for the above equation occurs for
rk � k2½ðr þ 3�/2Þ þ ð1� k2Þ2� < 0; ð8Þ
which reduces to r þ 3�/2 < 0 with k ¼ 1 in the stable phase, as we indicated above.
Now we can proceed to analyze the numerical stability and determine the constraints for the splitting

parameters. We linearize the general step Eq. (4) by substituting / ¼ �/þ g and get
gtþDt þ Dtr2½ða1 � 1Þðr þ 1ÞgtþDt þ 2ða2 � 1Þr2gtþDt þ ða3 � 1Þr4gtþDt�
¼ gt þ Dtr2½a1ðr þ 1Þgt þ 2a2r2gt þ a3r4gt þ 3�/2gt�; ð9Þ
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The Fourier transform of the above equation results in
gtk;tþDt½1� Dtk2fða1 � 1Þðr þ 1Þ � 2ða2 � 1Þk2 þ ða3 � 1Þk4g�
¼ gk;t½1� Dtk2fa1ðr þ 1Þ � 2a2k2 þ a3k4 þ 3�/2g�: ð10Þ
This can be re-expressed as
gk;tþDt½1þ DtLk� ¼ gk;t½1þ DtRk�: ð11Þ

Note that rk ¼ Lk �Rk. While we want to avoid numerical instability, the physical instability is to be expected
during the dynamics, and will not lead to numerical problems. But, as we indicated above, both of the insta-
bilities will be captured by a general von Neumann stability analysis. One manner of dealing with this is to
recognize that a proper unconditionally stable algorithm will be stable if and only if rk > 0 and should be
unstable if and only if rk < 0. The von Neumann stability criterion is jgk;tþDtj < jgk;tj. We can express our
restriction on the regime of von Neumann stability as
½1þ DtLk�2 > ½1þ DtRk�2 for rk > 0

½1þ DtLk�2 < ½1þ DtRk�2 for rk < 0: ð12Þ
The above inequalities can be rewritten as
rk½2þ DtðLk þRkÞ� > 0 for rk > 0

rk½2þ DtðLk þRkÞ� < 0 for rk < 0
which, dividing by rk can be reduced to a single inequality, 2þ DtðLk þRkÞ > 0, which implies 0 < Lk þRk

for arbitrarily large Dt, and we obtain
0 < �k2½ðr þ 1Þð2a1 � 1Þ þ 3�/2 � 2ð2a2 � 1Þk2 þ ð2a3 � 1Þk4�; ð13Þ

which can be satisfied using the mode independent restrictions (and r > �1)
a1 <
1

2
� 3�/2

2ðr þ 1Þ ; a2 P
1

2
; a3 6

1

2
: ð14Þ
These are the constraints on the parameters a1; a2 and a3 for unconditionally stable algorithms for all modes,
for quenches in the range �1 < r < �3�/2. With these choices there is no threshold for Dt in order to maintain
numerical stability. The quantity Dt is termed the algorithmic time step. We note that unconditional stability
does not mean that the user of such algorithms may simply take as large a time step as is desired. Indeed, to
obtain accurate physical results, there are additional restrictions on how large Dt may be.

We mention in passing that the ‘‘standard” approach to developing a robust, unconditionally stable algo-
rithm, using a fully implicit (Euler backward, a1 ¼ a2 ¼ a3 ¼ 0) or Crank-Nicolson ða1 ¼ a2 ¼ a3 ¼ 0:5Þ
scheme fails in this case because these schemes do not satisfy the restrictions Eq. (14). Computer simulations
demonstrate that both these schemes become unstable and violate the dissipative nature of the PFC dynamics
whenever the algorithmic time step Dt exceeds some threshold, making them unsuitable.

2.3. Effective time step

To determine how large a time step we may take, and still maintain an accurate solution, we calculate the
Fourier space ‘‘effective time step”, as will be described below. We first note that when a1 ¼ a2 ¼ a3 ¼ 1, Eq.
(4) corresponds to the traditional Euler update
/0tþDt � /t

DtEu

¼ r2f½r þ ð1þr2Þ2�/t þ /3
t g; ð15Þ
where /0tþDt denotes the field obtained after an Euler update on a previous field /t, while we use the unprimed
/tþDt to denote the field obtained by unconditionally stable algorithm on /t throughout.

We now define the spatial Fourier transform of /k;t ¼
R

dxe�ik�x/tðxÞ. In Fourier space, writing k2 � jkj2,
the Euler update becomes
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/0k;tþDt � /k;t

DtEu

¼ �k2f½r þ ð1� k2Þ2�/k;t þ ð/3Þk;tg; ð16Þ
where ð/3Þk;t ¼
R

dxe�ik�x/3
t ðxÞ.

In Fourier space, the unconditionally stable algorithms Eq. (4) can be written in a form that is analogous to
Eq. (16):
/k;tþDt � /k;t

DtPFC
eff ðk;DtÞ ¼ �k2f½r þ ð1� k2Þ2�/k;t þ ð/3Þk;tg; ð17Þ
where we define k-dependent effective time step by
DtPFC
eff ðk;DtÞ � Dt

1þ Dtk2½ðr þ 1Þð1� a1Þ þ 2k2ða2 � 1Þ þ k4ð1� a3Þ�
ð18Þ
For SH equation, the effective time step is
DtSH
eff ðk;DtÞ � Dt

1þ Dt½ðr þ 1Þð1� a1Þ þ 2k2ða2 � 1Þ þ k4ð1� a3Þ�
: ð19Þ
Dteffðk;DtÞ is an effective time step for a mode k, corresponding to an algorithmic time step Dt. Of particular
interest in the case of periodic systems is the dominant mode (the lattice spacing in the PFC model), which, for
the scaling choices made in Eqs. (2) and (3) is simply k0 ¼ 1. Using the parameters employed in the simulations
shown in the next section of r ¼ �0:025; a1 ¼ 0:45; a2 ¼ 0:5; a3 ¼ 0:5, we obtain the dominant effective time
step for both equations
Dteffðk0;DtÞ ¼ Dt
1þ 29Dt=800

: ð20Þ
As Dt ¼ 1, we obtain the maximum dominant effective time step Dteffðk0;1Þ ¼ 800=29 � 27:6. We see that a
large algorithmic time step Dt does not always translate into a significant amount of system evolution, as the
effective time step always remains less than 28 for these parameter choices, no matter how large the algorith-
mic time step becomes. Thus, this value provides us with a useful bound on our exploration of just how large
an algorithmic time step to take, and still obtain accurate results. For example, if we take algorithmic time
steps that yields an effective time step Dteffðk0;DtÞ ¼ Dteffðk0;1Þ=2 ¼ 400=29, then we find Dt ¼ 800=29. We
demonstrate in the next section that this algorithm, when applied to the PFC equation, realizes a significant
speedup compared to the traditional Euler algorithm, while maintaining a controlled level of accuracy.
3. Numerical results

The simulations were performed in two-dimensions. Fig. 1 shows typical snapshots of simulations for the
PFC model with parameters �/ ¼ 0:07;Dx ¼ 1:0, and Lsys ¼ 128 with random initial conditions which corre-
sponds to the liquid state. For comparison, all the simulations start with the same initial condition. In the Fig-
ure white regions indicate / ¼ �/, red / ¼ �/þ 0:2 and blue / ¼ �/� 0:2. The top row was obtained using the
Euler algorithm DtEu ¼ 0:015 at time steps n = 30,000, n = 60,000, n = 90,000, and n = 160,000. The second
and lower rows were obtained using the unconditionally stable algorithm with (moving down)
Dt ¼ 3;Dt ¼ 10, and Dt ¼ 30. For illustration and comparison purposes, we show the system snapshots at
the same energy density as the top row – from left, the energy density E ¼ 0:002374;E ¼
0:002360;E ¼ 0:002357, and E ¼ 0:002350 from the first to fourth column, respectively. We immediately
see that, for the times and energies selected, there are no visible differences between the Euler update simula-
tion and the unconditionally stable algorithm with Dt ¼ 3. However, there are visible differences between the
Euler update and the simulations with Dt > 3. We now wish to make these qualitative observations more
quantitative.

To study the accuracy, we compare simulations at the same energy density E ¼ 0:002374 (the first column

in Fig. 1). We compute a measure of the error:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð/Eu � /unÞ

2i=hð/Eu � �/Þ2i
q

, where /EuðxÞ denotes the fields



Fig. 1. Snapshots of simulations of the PFC model. Time increases from left to right. The first row shows the field obtained using the Euler
algorithm with DtEu ¼ 0:015. The second to bottom rows show the fields obtained employing the unconditionally stable algorithms, when
using algorithmic time steps of Dt ¼ 3;Dt ¼ 10, and Dt ¼ 30.
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obtained using Euler algorithm and /unðxÞ denotes the fields obtained using the unconditionally stable algo-
rithm. Fig. 2 shows a plot of the error versus a range of algorithmic time steps Dt. Fig. 2 indicates that, unsur-
prisingly, the accuracy increases as we decrease the algorithmic time step Dt. When Dt 6 3, the error is below
5%. On the other hand, the error behavior in Fig. 2 for a large algorithmic time step tends to saturate, mir-
roring the saturation in the effective time step Dteff for the dominant mode k0 ¼ 1.

Fig. 3 shows a comparison between the dominant effective time step Dteffðk0;DtÞ in Eq. (20) and a numerical
estimate of the same quantity. The numerical estimate is obtained by calculating ttot

Eu=nun, where ttot
Eu is the total

time needed to reach the final state (a crystalline state without dislocations) using Euler algorithm and nun is
the number of computer steps needed to reach the same state using unconditionally stable algorithms. We find
good agreement for Dt 6 3, while for Dt > 3, the separation between the analytic and numerical expressions
increases. While the agreement at small times steps in unsurprising, the curve provides a useful metric for the
optimum algorithmic time step of Dt � 3, for the chosen parameters. When Dt ¼ 3, the ratio of the number of
time steps needed to achieve a particular energy using the unconditionally stable versus Euler algorithm is
approximately 180 (the ratio of the dominant mode effective time step to the Euler time step). This is a sub-
stantial speedup, and requires minimal analysis to implement the technique.



0.1 1 10 100 1000 10000
Δt

0.1

1

10

Δt
ef

f(k
0,

Δt
)

Fig. 3. A comparison between the theoretical dominant effective time step (solid line) and the numerical estimate of the same quantity
(circle).
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4. Conclusions

In this paper, we have presented an unconditionally stable algorithm applicable to finite difference solutions
of the the PFC equation. We have demonstrated that a fixed algorithmic time step driving scheme may provide
significant speedup, with a controlled level of accuracy, when compared with Euler algorithm. For the repre-
sentative parameters chosen, a speedup of a factor of 180 was obtained. The analytical results and the numer-
ical results are consistent with an effective time step analysis. Although this algorithm allows arbitrarily large
algorithmic time steps, caution is indicated, as taking too large an algorithmic time step will yield inaccuracies
with little improvement in the overall speedup of the calculation. This saturation in the speedup results from
the details of how the system’s energy evolution (and its corresponding microstructural evolution) is governed
by the effective time step, which saturates as the algorithmic time step increases. Thus, there is little advantage
in too large an algorithmic time step. A method for obtaining a reasonable value for the algorithmic time step
Dt is suggested, in which a few test cases are run with different values of Dt to see which one offers a good
speedup and maintains the desired accuracy. The analytic form of the effective time step provides a useful
guide for deciding how large a time step to select when trading off the obtainable speedup versus the loss
of accuracy.

We expect the methodology developed in this paper could find extensive applications in a wide class of non-
equilibrium systems. For example, it can be straightforwardly applied to the Swift–Hohenberg equation, given
its similarity with the phase field crystal model. Additionally, the method also will apply to systems where
there is a dominant mode realized at late times, such as is found in diblock co-polymers. This method should
allow researchers to dramatically improve the computational efficiency associated with modeling the dynamics
of materials systems. On the other hand, the present methodology developed in this paper is certainly limited
to the dynamical model of transport that only has a first order of time derivative of the order parameter.
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It would certainly be interesting to attempt to extend this methodology to the dynamics of phase transitions
that contain higher order terms, such as those that violate the assumption of local equilibrium [27].
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